1,465 research outputs found

    Convergence analysis of a proximal Gauss-Newton method

    Full text link
    An extension of the Gauss-Newton algorithm is proposed to find local minimizers of penalized nonlinear least squares problems, under generalized Lipschitz assumptions. Convergence results of local type are obtained, as well as an estimate of the radius of the convergence ball. Some applications for solving constrained nonlinear equations are discussed and the numerical performance of the method is assessed on some significant test problems

    Learning Multiple Visual Tasks while Discovering their Structure

    Get PDF
    Multi-task learning is a natural approach for computer vision applications that require the simultaneous solution of several distinct but related problems, e.g. object detection, classification, tracking of multiple agents, or denoising, to name a few. The key idea is that exploring task relatedness (structure) can lead to improved performances. In this paper, we propose and study a novel sparse, non-parametric approach exploiting the theory of Reproducing Kernel Hilbert Spaces for vector-valued functions. We develop a suitable regularization framework which can be formulated as a convex optimization problem, and is provably solvable using an alternating minimization approach. Empirical tests show that the proposed method compares favorably to state of the art techniques and further allows to recover interpretable structures, a problem of interest in its own right.Comment: 19 pages, 3 figures, 3 table

    A stochastic inertial forward-backward splitting algorithm for multivariate monotone inclusions

    Full text link
    We propose an inertial forward-backward splitting algorithm to compute the zero of a sum of two monotone operators allowing for stochastic errors in the computation of the operators. More precisely, we establish almost sure convergence in real Hilbert spaces of the sequence of iterates to an optimal solution. Then, based on this analysis, we introduce two new classes of stochastic inertial primal-dual splitting methods for solving structured systems of composite monotone inclusions and prove their convergence. Our results extend to the stochastic and inertial setting various types of structured monotone inclusion problems and corresponding algorithmic solutions. Application to minimization problems is discussed

    A first-order stochastic primal-dual algorithm with correction step

    Get PDF
    We investigate the convergence properties of a stochastic primal-dual splitting algorithm for solving structured monotone inclusions involving the sum of a cocoercive operator and a composite monotone operator. The proposed method is the stochastic extension to monotone inclusions of a proximal method studied in {\em Y. Drori, S. Sabach, and M. Teboulle, A simple algorithm for a class of nonsmooth convex-concave saddle-point problems, 2015} and {\em I. Loris and C. Verhoeven, On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty, 2011} for saddle point problems. It consists in a forward step determined by the stochastic evaluation of the cocoercive operator, a backward step in the dual variables involving the resolvent of the monotone operator, and an additional forward step using the stochastic evaluation of the cocoercive introduced in the first step. We prove weak almost sure convergence of the iterates by showing that the primal-dual sequence generated by the method is stochastic quasi Fej\'er-monotone with respect to the set of zeros of the considered primal and dual inclusions. Additional results on ergodic convergence in expectation are considered for the special case of saddle point models
    corecore